The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical and/or mechanical properties of electrical steels are required for high-volume electric motors and recent advances include steels with increased silicon (Si) content (from <3.5 wt% Si up to 6.5 wt%). Whilst the 6.5 wt% Si steels provide increased motor performance at high frequencies, the formation of a brittle BCC B2/D03 phase means that they cannot be cold-rolled, and therefore the production route involves siliconization after the required thickness strip is produced. The advances in computationally driven alloy design, coupled with physical metallurgical understanding, allow for more adventurous alloy design for electrical steels, outside the traditional predominantly Fe-Si compositional space. Two alloys representing a new alloy family called HiPPES (High-Performing and Processable Electrical Steel), based on low cost commonly used steel alloying elements, have been developed, cast, rolled, heat-treated, and both magnetically and mechanically tested. These alloys (with nominal compositions of Fe-3.2Mn-3.61Si-0.63Ni-0.75Cr-0.15Al-0.4Mo and Fe-2Mn- 4.5Si-0.4Ni-0.75Cr-0.09Al) offer improvements compared to current ≈3 wt% Si grades: in magnetic performance (>25% magnetic loss reduction at >1 kHz), and in tensile strength (>33% increase in tensile strength with similar elongation value). Most importantly, they are maintaining processability to allow for full-scale commercial production using traditional continuous casting, hot and cold rolling, and annealing. The new alloys also showed improved resilience to grain size, with the HiPPES materials showing a <5% variance in loss at frequencies greater than 400 Hz for grain sizes between 55 and 180 μm. Comparatively, a commercial M250-35A material showed a 40% increase in loss for the same range. The paper reports on the alloy design approach used, the microstructures, and the mechanical, electrical and magnetic properties of the developed novel electrical steels compared to conventional ≈3 wt% Si and 6.5 wt% Si material.
Loading....